Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 13: 993720, 2022.
Article in English | MEDLINE | ID: covidwho-2142018

ABSTRACT

Pathogenesis of lung injury in COVID-19 is not completely understood, leaving gaps in understanding how current treatments modulate the course of COVID-19. Neutrophil numbers and activation state in circulation have been found to correlate with COVID-19 severity, and neutrophil extracellular traps (NETs) have been found in the lung parenchyma of patients with acute respiratory distress syndrome (ARDS) in COVID-19. Targeting the pro-inflammatory functions of neutrophils may diminish lung injury in COVID-19 and ARDS. Neutrophils were isolated from peripheral blood of healthy donors, treated ex vivo with dexamethasone, tocilizumab and intravenous immunoglobulin (IVIG) and NET formation, oxidative burst, and phagocytosis were assessed. Plasma from critically ill COVID-19 patients before and after clinical treatment with IVIG and from healthy donors was assessed for neutrophil activation-related proteins. While dexamethasone and tocilizumab did not affect PMA- and nigericin-induced NET production ex vivo, IVIG induced a dose-dependent abrogation of NET production in both activation models. IVIG also reduced PMA-elicited reactive oxygen species production, but did not alter phagocytosis. COVID-19 patients were found to have elevated levels of cell-free DNA, neutrophil elastase and IL-8 as compared to healthy controls. Levels of both cell-free DNA and neutrophil elastase were lower 5 days after 4 days of daily treatment with IVIG. The lack of impact of dexamethasone or tocilizumab on these neutrophil functions suggests that these therapeutic agents may not act through suppression of neutrophil functions, indicating that the door might still be open for the addition of a neutrophil modulator to the COVID-19 therapeutic repertoire.


Subject(s)
COVID-19 Drug Treatment , Cell-Free Nucleic Acids , Lung Injury , Respiratory Distress Syndrome , Humans , Neutrophils/metabolism , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins, Intravenous/pharmacology , Leukocyte Elastase/metabolism , Lung Injury/metabolism , Cell-Free Nucleic Acids/metabolism , Dexamethasone
2.
Ann Clin Lab Sci ; 52(3): 374-381, 2022 May.
Article in English | MEDLINE | ID: covidwho-1918736

ABSTRACT

OBJECTIVE: Exploration of biomarkers to predict the severity of COVID-19 is important to reduce mortality. Upon COVID-19 infection, neutrophil extracellular traps (NET) are formed, which leads to a cytokine storm and host damage. Hence, the extent of NET formation may reflect disease progression and predict mortality in COVID-19. METHODS: We measured 4 NET parameters - cell-free double stranded DNA (cell-free dsDNA), neutrophil elastase, citrullinated histone H3 (Cit-H3), and histone - DNA complex - in 188 COVID-19 patients and 20 healthy controls. Survivors (n=166) were hospitalized with or without oxygen supplementation, while non-survivors (n=22) expired during in-hospital treatment. RESULTS: Cell-free dsDNA was significantly elevated in non-survivors in comparison with survivors and controls. The survival rate of patients with high levels of cell-free dsDNA, neutrophil elastase, and Cit-H3 was significantly lower than that of patients with low levels. These three markers significantly correlated with inflammatory markers (absolute neutrophil count and C-reactive protein). CONCLUSION: Since the increase in NET parameters indicates the unfavourable course of COVID-19 infection, patients predisposed to poor outcome can be rapidly managed through risk stratification by using these NET parameters.


Subject(s)
COVID-19 , Extracellular Traps , Biomarkers/metabolism , COVID-19/diagnosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/metabolism , Extracellular Traps/metabolism , Histones/blood , Histones/metabolism , Humans , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Neutrophils/metabolism , Prognosis
4.
JCI Insight ; 5(11)2020 06 04.
Article in English | MEDLINE | ID: covidwho-980226

ABSTRACT

In severe cases of coronavirus disease 2019 (COVID-19), viral pneumonia progresses to respiratory failure. Neutrophil extracellular traps (NETs) are extracellular webs of chromatin, microbicidal proteins, and oxidant enzymes that are released by neutrophils to contain infections. However, when not properly regulated, NETs have the potential to propagate inflammation and microvascular thrombosis - including in the lungs of patients with acute respiratory distress syndrome. We now report that sera from patients with COVID-19 have elevated levels of cell-free DNA, myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (Cit-H3); the latter 2 are specific markers of NETs. Highlighting the potential clinical relevance of these findings, cell-free DNA strongly correlated with acute-phase reactants, including C-reactive protein, D-dimer, and lactate dehydrogenase, as well as absolute neutrophil count. MPO-DNA associated with both cell-free DNA and absolute neutrophil count, while Cit-H3 correlated with platelet levels. Importantly, both cell-free DNA and MPO-DNA were higher in hospitalized patients receiving mechanical ventilation as compared with hospitalized patients breathing room air. Finally, sera from individuals with COVID-19 triggered NET release from control neutrophils in vitro. Future studies should investigate the predictive power of circulating NETs in longitudinal cohorts and determine the extent to which NETs may be novel therapeutic targets in severe COVID-19.


Subject(s)
Cell-Free Nucleic Acids/metabolism , Coronavirus Infections/metabolism , Extracellular Traps/metabolism , Histones/metabolism , Neutrophils/metabolism , Peroxidase/metabolism , Pneumonia, Viral/metabolism , Adult , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19 , Case-Control Studies , Citrullination , Coronavirus Infections/blood , Coronavirus Infections/therapy , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , In Vitro Techniques , L-Lactate Dehydrogenase/metabolism , Lymphocyte Count , Male , Middle Aged , Pandemics , Platelet Count , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Respiration, Artificial , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL